Calculating It through the Magnitudes and the Angle between the Two Vectors
The process is as follows.
Let's suppose there are two vectors, \(\overrightarrow{a}\) and \(\overrightarrow{b}\).
Let the magnitudes be \(a\) and \(b\), respectively.
Let \(\theta\) be the angle between the two vectors.
Let the unit vector which is perpendicular to the two vectors be \(\overrightarrow{c}\),
If so,
$$\overrightarrow{a} \times \overrightarrow{b} = ab\sin\theta\overrightarrow{c}$$
Finding It Using the Components
Let the vectors \(\overrightarrow{a}\) and \(\overrightarrow{b}\) be defined as follows.
$$\overrightarrow{a} = (a_x\hat{i} + a_y\hat{j} + a_z\hat{k}), \overrightarrow{b} = (b_x\hat{i}+b_y\hat{j} + b_z\hat{k})$$
(\(\hat{i}\), \(\hat{j}\), \(\hat{k}\) are the unit vectors of \(x\), \(y\), \(z\) axes.)
Then, \(\overrightarrow{a} \times \overrightarrow{b}\) is given as follows.
$$\overrightarrow{a} \times \overrightarrow{b} = (a_x\hat{i} + a_y\hat{j} + a_z\hat{k}) \times (b_x\hat{i} + b_y\hat{j} + b_z\hat{k})$$
As the distributive property is satisfied, it can be expanded in this way.
$$\overrightarrow{a}\times\overrightarrow{b} = a_x b_x(\hat{i} \times \hat{i}) + a_xb_y(\hat{i} \times \hat{j}) + a_xb_z(\hat{i} \times \hat{k}) + a_yb_x(\hat{j} \times \hat{i}) + a_yb_y(\hat{j} \times \hat{j}) + a_yb_z(\hat{j} \times \hat{k}) + a_zb_x(\hat{k} \times \hat{i}) + a_zb_y(\hat{k} \times \hat{j}) + a_zb_z(\hat{k} \times \hat{k})$$
Because the cross products of the unit vectors are determined as follows,
$$\hat{i} \times \hat{i} = \hat{j} \times \hat{j} = \hat{k} \times \hat{k} = zero \space vector$$
$$\hat{i} \times \hat{j} = \hat{k}, \hat{j} \times \hat{i} = -\hat{k}, \hat{j} \times \hat{k} = \hat{i}, \hat{k} \times \hat{j} = -\hat{i}, \hat{k} \times \hat{i} = \hat{j}, \hat{i} \times \hat{k} = -\hat{j}$$
it can be modified as shown below.
$$\overrightarrow{a}\times\overrightarrow{b} = a_xb_y(\hat{k}) - a_xb_z(\hat{j}) - a_yb_x(\hat{k}) + a_yb_z(\hat{i}) + a_zb_x(\hat{j}) - a_zb_y(\hat{i})$$
Rearranging this, we obtain the following.
$$
\overrightarrow{a}\times\overrightarrow{b} =
(a_yb_z - a_zb_y)(\hat{i}) + (a_zb_x - a_xb_z)(\hat{j}) + (a_xb_y - a_yb_x)(\hat{k})
$$
If we look closely at the above equation, it is the determinant of the following matrix.
$$
\begin{vmatrix}
\hat{i} & \hat{j} & \hat{k} \\
a_x & a_y & a_z \\
b_x & b_y & b_z
\end{vmatrix}
=
\begin{vmatrix}
a_y & a_z \\
b_y & b_z
\end{vmatrix}
\hat{i}
-
\begin{vmatrix}
a_x & a_z \\
b_x & b_z
\end{vmatrix}
\hat{j}
+
\begin{vmatrix}
a_x & a_y \\
b_x & b_y
\end{vmatrix}
\hat{k}
$$
'TECHNOLOGY' 카테고리의 다른 글
Molar Specific Heat of an Ideal Gas (0) | 2025.02.18 |
---|---|
Properties of Definite Integrals (0) | 2025.02.12 |
Types of Differentiation (0) | 2025.02.12 |
Finding the Dot Product of Vectors (0) | 2025.02.12 |